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INTRODUCTION

Multi-Purpose Cadaster may be
defined as Integrated land
information system containing
legal information related to land
that may include ownership
records, physical information such
as topography, man-made
features, and cultural features
such as zoning, land use,
demographics information in a
common and accurate geospatial
reference framework.

(United Nations. Economic Commission for Europe. (1996).
Land Administration Guidelines: with special reference to
countries in transition)
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INTRODUCTION

MPC data is considered as a foundational dataset within a National
Spatial Data Infrastructure (NSDI) ecosystem.

An NSDI provides a basis for spatial data discovery, evaluation, and
application for users and providers within all levels of government,
the commercial sector, the non-profit sector, academia and by
citizens in general.
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INTRODUCTION

Applying Geospatial Artificial Intelligence (GeoAl) methods to MPC
data could provide valuable insights to support decision making,
while enriching the NSDI by integrating additional information.

Three use cases will be presented:
= Parcel delineation.
= Forecasting of the urban growth.
= Data extraction from 360 images.



GEOSPATIAL ARTIFICIAL

INTELLIGENCE

GeoAl is an emerging scientific field
that combines methods and
techniques from Artificial
Intelligence, particularly ML and DL,
with GIS to analyze and interpret
geospatial data.

GeoAl aims to extract information
and insights from various sources of
Geospatial Data (Satellite images,
LiDAR, loT, etc.).

GeoAl =

Artificial

Intelligenc

GIS + Artificial Intelligence



GEOSPATIAL ARTIFICIAL
INTELLIGENCE

Some Concepts:

Artificial Intelligence refers to the

ability to perform intelligent tasks R el aERCE
like those carried out by humans e sncreason fERtimans
through computer systems to solve

specific problems. MACHINE LEARNING

Algorithms with the ability to learn

without being explicitly programmed

ML algorithms allow computer
systems to learn from data to solve B EEn I EARRE
specific  tasks, without being Subset of machine learning

in which artificial neural

expliCitly progra mmed. networks adapt and learn

from vast amounts of data

DL algorithms is a branch of ML
methods based on Deep Artificial
Neural Networks (ANN).



GEOSPATIAL ARTIFICIAL
INTELLIGENCE

DL workflow in GeoAl :

Data Data
Management

Labeling . Train Model Inference Analysis

IMAGERY LABELING DATA PREP TRAIN MODEL DETECT OBJECTS ANALYSIS

Example of DL Workflow in GeoAl :
Building Detection



GEOSPATIAL ARTIFICIAL
INTELLIGENCE

DL Workflow in GeoAl - Using Pretrained Model:

Data Data

Management Labeling [ . Train Model Inference Analysis

=

Pretrained models are DL models that have been previously trained on a
large dataset. These models can be used directly, or fine-tuned using
Transfer Learning, for a specific tasks in GeoAl.



GEOAI FOR PARCEL DELINEATION

Parcel delineation is crucial
for MPC as it establishes,
clear and accurate parcel
boundaries, that are the
foundation for integrating
various land-related data.

This data supports various
application such as Urban
planning, Agriculture,
Environmental Management,
etc.




GEOAI FOR PARCEL DELINEATION

While manual parcel delineation offers precision, it is a slow and
costly process, which may face scalability issues for large areas.

It is important to choose cost-effective methods for Parcel
Delineation to ensure that the MPC remains adaptable to evolving
needs.

A cost-effective method should balance affordability and accuracy
to maximize efficiency, scalability and usability.

e
GeoAl wm) @/’@ AHL\»%



GEOAI FOR PARCEL DELINEATION

Deep Learning Models:
UNet Model:
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GEOAI FOR PARCEL DELINEATION

Deep Learning Models :

TransUNet Model:
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GEOAI FOR PARCEL DELINEATIO

Deep Learning Models

DeepLabV3+ with DenseNet-121 as backbone:
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GEOAI FOR PARCEL DELINEATION

Urban Area:
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GEOAI FOR PARCEL DELINEATION

Urban Area:
Data Preparation : 22 USGS

science for a changing world

Ortho-imagery Data: Tm RGB+NIR

Graduation Project
Elmoussaoui & Rachidi, 2024



GEOAI FOR PARCEL DELINEATION

Rural Area:

Location :
Middelkoop

Country :
Netherlands

Area : 80
kilometers square

Graduation Project
Elmoussaoui & Rachidi, 2024



GEOAI FOR PARCEL DELINEATION

Rural Area:
Data Preparation : 22 USGS

science for a changing world

Al4Boundaries Ortho-imagery Data: Tm RGB+NIR
Parcel Data

Graduation Project
Elmoussaoui & Rachidi, 2024



GEOAI FOR PARCEL DELINEATION

Deep Learning Models
Learning Curves for the Rural area :

Model Loss

UNet

Model Loss

Model Loss

DeeplLabV3+

| Metrics | __Loss | Accuracy | Precision | Recall | FiScore | __loU __

| UNet  [IERNE
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0.06

TransUNet
0.99 0.99
0.99 0.99
0.98 0.98

* Metrics based on the number of instances

0.99 0.97
0.99 0.97
0.98 0.96

Graduation Project
Elmoussaoui & Rachidi, 2024



GEOAI FOR PARCEL DELINEATION

Deep Learning Models
Results for the Rural area :

UNet —)

DeeplabV3+ )

Graduation Project
Elmoussaoui & Rachidi, 2024
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GEOAI FOR PARCEL DELINEATION

Deep Learning Models
Learning Curves for the Urban area:

Model Loss

Model Loss
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* Metrics based on the number of instances
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GEOAI FOR PARCEL DELINEATION

Deep Learning Models
Results for the Rural area :

UNet —)
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Elmoussaoui & Rachidi, 2024



GEOAI FOR URBAN GROWTH

Urban growth forecasting is very important for optimizing Land Use
Planning and Zoning. In addition, a precise forecasting of urban
expansion, planners and decision makers can anticipate challenges to
ensure a sustainable development of urban landscapes.
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GEOAI FOR URBAN GROWTH

Methodology
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GEOAI FOR URBAN GROWTH

Data preparation

v 13 successive images
v Binary Mask : Urban,
Not Urban

f Basic sequence
Prepared
sequences v" Number of previous images: 5
v Number of basic sequences: 8 Sequence
Basic Predicted
Sequences : Sequences :
0>4 ® > 155 /
1-5 @ > 256 .
256 > 357 Predicted v Tensor £13,1%247,953,1)
3>7 @ > 48 - Number o
458 > 559 sequence successive images
559 e > 6510 : (1.24.7,958).: Image size
6210 > 7211 \ v Predicting the next sequence, 1: Dimension
211 e » 8212 v" Number of predicted sequences: 8
F ( BASIC_SEQUENCE ) = NEXT_SEQUENCE

Yaagoubi et al., 2024



GEOAI FOR URBAN GROWTH

ConvLSTM model
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GEOAI FOR URBAN GROWTH

- Forecasting urban growth

-7°30' -7°28' -7°26

False False True Kappa

33°40'

Positive | Negative | Positive | Negative | Coefficient

337698 3499 22442 824752 94,75%

33°38'

2022

Compéring the real urbanization map
2021 and the predicted one (ConvLSTM). Yaagoubi et al,, 2024



GEOAI FOR DATA EXTRACTION FROM
360 IMAGES

GeoAl and computer vision offer efficient techniques for extracting
geospatial data from 360-degree images, enhancing land-related
datasets. Specifically, these methods enable the extraction of valuable
information from large-scale street-level imagery with greater
scalability.




GEOAI FOR DATA EXTRACTION FROM
360 IMAGES

Turning Images into Insights: 360° Imagery to
Land-related datasets

Pre-processing of the
Anonymization images using computer
algorithms vision algorithms

63[3[3B

360° images Segmentation
algorithms



GEOAI FOR DATA EXTRACTION FROM
360 IMAGES

Turning Images into Insights: 360° Imagery to
Land-related datasets

Virtual Tour creation Feature extraction

Tour Navigation Land-related data



GEOAI FOR DATA EXTRACTION FROM
360 IMAGES

Turning Images into Insights: 360° Imagery to
Land-related datasets

o = Organization Tours

&

Prague Downtown 2




GEOAI FOR DATA EXTRACTION FROM
360 IMAGES

Turning Images into Insights: 360° Imagery to
Land-related datasets

Panoptic Segmentation of 360 images:




GEOAI FOR DATA EXTRACTION FROM
360 IMAGES

Turning Images into Insights: 360° Imagery to
Land-related datasets

Point cloud generation and Segmentation from 360 images:

Mapersive

Mapersive




THANK YOU!

For more information visit:
https://www.researchgate.net/profile/Reda-Yaagoubi
www.mapersive.com
or contact:

Email: r.yaagoubi@iav.ac.ma
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